ATR maintains select progenitors during nervous system development.

نویسندگان

  • Youngsoo Lee
  • Erin R P Shull
  • Pierre-Olivier Frappart
  • Sachin Katyal
  • Vanessa Enriquez-Rios
  • Jingfeng Zhao
  • Helen R Russell
  • Eric J Brown
  • Peter J McKinnon
چکیده

The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pot1a prevents telomere dysfunction and ATM-dependent neuronal loss.

Genome stability is essential for neural development and the prevention of neurological disease. Here we determined how DNA damage signaling from dysfunctional telomeres affects neurogenesis. We found that telomere uncapping by Pot1a inactivation resulted in an Atm-dependent loss of cerebellar interneurons and granule neuron precursors in the mouse nervous system. The activation of Atm by Pot1a...

متن کامل

Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems.

Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) tha...

متن کامل

The origin and cell lineage of microglia: new concepts.

Despite intense study, the precise origin and cell lineage of microglia, the resident mononuclear phagocytes of the nervous system, are still a matter for debate. Unlike macroglia (astrocytes and oligodendrocytes) and neurons, which are derived from neuroectoderm, microglial progenitors arise from peripheral mesodermal (myeloid) tissue. The view still commonly held is that tissue-resident monon...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

17-P015 Temporal regulation of neurogenesis in the enteric nervous system

The enteric nervous system (ENS) is a complex network of neurons and glia within the gut wall which originate from neural crest cells. Self-renewing, multipotential ENS progenitors have been isolated from the gut of foetal as well as adult rodents, however, the identity of the ENS progenitor and the regulation of its neurogenic potential invivo, are currently unknown. Sox10 is an HMG-containing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2012